Better brake lamps for older vehicles

LED brake lamps.jpg

It’s ironic that, as the car screeched to a halt scant feet behind my FJ40 while I sat helpless at a stoplight, my first panicked thought centered on the vehicle and not my cervical spine. 

But after all, the value of the Land Cruiser has arced somewhere northwards of $50,000 (my last offer from a walk-up stranger at the west Overland Expo). A rear-end collision would do no favors for that arc. So—for about the tenth time in several months—I determined to install better brake lamps. This time I acted on it.

The revolution of the LED has affected all areas of automotive lighting. But while most amazement centers around the astounding brilliance, power conservation, and durability of LED headlamps and driving lamps, we might better appreciate their advantage in brake lamps. Why? No, not just because they are brighter, but because an LED lamp reaches full brightness two tenths of a second faster than an incandescent bulb. That might not sound like much, but consider that a vehicle moving at 40 mph travels 12 feet in two-tenths of a second. So that slight advantage could very well mean the difference between a near miss and a car-and-cervical-spine-crunching collision.

My FJ40 wears a rear bumper/rack from Stout Equipment (now sadly defunct), and in place of the stock round lamps has oval Truck-Lite lamps, but fitted with the same dual-filament bulbs (Sylvania 2057LL) with staggered locating posts, common on millions of older vehicles. A short search led me to a kit from Aaron LED comprising a pair of LED bulbs and the requisite 50-watt resistors.

That requirement for a resistor confuses many people, as it confused me. The simple explanation is that an LED bulb retrofitted in an application such as this uses less current than the original bulb. Supplied with full current, on the turn-signal function it will flash far too quickly. The over-current condition can also reduce the lifespan of the bulb. The resistor simply converts the excess current to heat—which, the astute among you will guess, negates the energy-saving characteristic of the LED. Obviously in a brake and turn-signal lamp only on intermittently this is of scant concern. More so is the fact that the resistor can get quite hot and should be mounted to a metal surface to help dissipate this heat. (Other LED lamps are designed to use full current and do not suffer this loss of efficiency.)

The kit came with cheap Siamese clips to tap into the existing wiring. I hate those things, which expose the wiring to the elements and fail at a remarkably consistent rate. So I cut the wires and used crimped connections covered with heat-shrink tubing. (Those more purist than I might scoff that I did not solder the conections. However, I have crimped connections protected with heat-shrink tubing on this vehicle that are at least 25 year old and still working perfectly. For high-amperage installations I’ll solder, but I don’t think it’s necessary for low-wattage bulbs. And I do use a proper crimping tool, not pliers.)

Old and new.

Old and new.

The result was a satisfyingly obvious increase in the brightness of my brake lamps, not to mention the faster activation. I’m now considering adding even more security with a high-mounted LED third brake lamp from Truck-Lite. I really hate those screeching noises behind me.